

多 旋 翼 飞 行 器 设 计 与 控 制 第八讲 可观性和卡尔曼滤波

全权 副教授 qq_buaa@buaa.edu.cn 自动化科学与电气工程学院 北京航空航天大学 2016年4月28日 北航主南401

前言

东方哲理:可观性对应的哲学道理是:观察问题是否客观全面。 宋代 苏轼诗词《题西林壁》的"横看成岭侧成峰,远近高低各不同。不识庐 家槎人育! 山真面目,只缘身在此山中"。这首 诗描写了庐山变化多姿的面貌,并借 景说理,指出观察问题应客观全面, 如果主观片面,就得不出正确的结论。 中国古代还有盲人摸象的故事。盲人 都说自己摸到的才是大象真正的样子。而实际上呢?他们一个也没说 对。后以"盲人摸象"比喻看问题以偏概全。图片:盲人摸象,来自 http://arkeke.blog.163.com/blog/static/2200920100220729757/

2016/4/28

什么是可观性? 此何设计卡尔曼滤波器?

2. 卡尔曼滤波

- 3. 多速率采样卡尔曼滤波
- 4. 扩展卡尔曼滤波
- 5. 应用实例
- 6. 总结
- 7. 作业

可观性就是回答"状态的变化能否由输出反映出来"

中医"望闻问切" 是否能瞧病?

网络大数据作为输出,能否观测 更有价值信息?

三个关键词:动态系统、状态、输出

黑箱系统

对于一个系统,根据输入与观测的关系,系统状态存在上图几种情况

状态A和状态C信息完全不会被出现在观测量中,根据观测信号不可能知道它 们内部变化情况,因此肯定不可观;虽然状态B和状态D的变化会在观测信号 中体现,但是根据有限的观测结果并不一定能将所有内部完全观测出来

□ 连续线性系统 (1) 定义 考虑如下连续线性系统

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ $\mathbf{y} = \mathbf{C}^{\mathrm{T}}\mathbf{x}$

定义1. 如果在有限时间间隔 $t_0 \leq t \leq t_f$ 内,根据输出值 $\mathbf{y}(t)$ 和给定值 $\mathbf{u}(t)$, 能够确定系统的初始状态 $\mathbf{x}(t_0)$ 的每一个分量,那么称此系统是完全 可观的,简称可观测。

三个关键词:动态系统、状态、输出

2016/4/28

□ 连续线性系统

(2) 直观解释(单入单出系统)

由系统方程可知 AТ

$$y = \mathbf{C}^{\mathsf{T}} \mathbf{x}$$
$$\dot{y} = \mathbf{C}^{\mathsf{T}} \dot{\mathbf{x}} = \mathbf{C}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{C}^{\mathsf{T}} \mathbf{B} u \Longrightarrow \dot{y} - \mathbf{C}^{\mathsf{T}} \mathbf{B} u = \mathbf{C}^{\mathsf{T}} \mathbf{A} \mathbf{x}$$
$$\ddot{y} = \mathbf{C}^{\mathsf{T}} \mathbf{A}^{2} = \mathbf{C}^{\mathsf{T}} \mathbf{A} \mathbf{D} = \mathbf{C}^{\mathsf{T}} \mathbf{D} \mathbf{C}^{\mathsf{T}} \mathbf{D} = \mathbf{C}^{\mathsf{T}} \mathbf{D} \mathbf{C}^{\mathsf{T}} \mathbf{D}$$

$$\ddot{y} = \mathbf{C}^{\mathrm{T}} \mathbf{A}^{2} \mathbf{x} + \mathbf{C}^{\mathrm{T}} \mathbf{A} \mathbf{B} u + \mathbf{C}^{\mathrm{T}} \mathbf{B} \dot{u} \Longrightarrow \ddot{y} - \mathbf{C}^{\mathrm{T}} \mathbf{A} \mathbf{B} u - \mathbf{C}^{\mathrm{T}} \mathbf{B} \dot{u} = \mathbf{C}^{\mathrm{T}} \mathbf{A}^{2} \mathbf{x}$$

几阶导数?如:
$$O'_{v} = \begin{bmatrix} O_{v} \\ C^{T}A^{n} \end{bmatrix}$$

为什么不名求

$$y^{(n-1)} - \sum_{k=0}^{n-2} \mathbf{C}^{\mathrm{T}} \mathbf{A}^{n-2-k} \mathbf{B} u^{(k)} = \mathbf{C}^{\mathrm{T}} \mathbf{A}^{n-1} \mathbf{X}$$

$$\begin{bmatrix} y \\ \dot{y} - \mathbf{C}^{\mathrm{T}} \mathbf{B} u \\ \vdots \\ y^{(n-1)} - \sum_{k=0}^{n-2} \mathbf{C}^{\mathrm{T}} \mathbf{A}^{n-2-k} \mathbf{B} u^{(k)} \end{bmatrix} = \mathbf{O}_{v} \mathbf{X} \quad \not \mathbf{X} \stackrel{\text{p}}{=} \mathbf{O}_{v} = \begin{bmatrix} \mathbf{C}^{\mathrm{T}} \\ \mathbf{C}^{\mathrm{T}} \mathbf{A} \\ \vdots \\ \mathbf{C}^{\mathrm{T}} \mathbf{A}^{n-1} \end{bmatrix}$$

k=0

1. 可观性

定理1.系统 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ 可观测的充分必要条件 rank $\mathbf{O}_{\mathbf{v}} = n_{\mathbf{o}}$

2016/4/28

□ 连续线性系统 (4) 例子

例1. 给出两个传感器GPS和加速度计,那么哪一个能够稳定地估计出 多旋翼速度?

• GPS。为了简化起见,我们用GPS观测位置,一般用如下模型 $\begin{bmatrix} \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ \varepsilon \end{bmatrix}$ $\int_{A} \begin{bmatrix} x \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ \varepsilon \end{bmatrix}$ $\int_{V} \begin{bmatrix} x \\ h \\ y = [1 \\ 0 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} \begin{bmatrix} y = x, & b \\ b \\ y = b \\ f \\ th \end{pmatrix} = b \\ f \\ f \\ th \end{pmatrix}$ $\int_{C_{T}} \begin{bmatrix} x \\ v \end{bmatrix} \begin{bmatrix} y = x, & b \\ b \\ y = b \\ f \\ th \end{pmatrix} = b \\ f \\ f \\ th \end{pmatrix}$ $\int_{C_{T}} \begin{bmatrix} x \\ v \end{bmatrix} \begin{bmatrix} y = x, & b \\ b \\ f \\ h \\ th \end{pmatrix} = b \\ f \\ f \\ th \end{pmatrix}$ $\int_{C_{T}} \begin{bmatrix} x \\ v \end{bmatrix} = b \\ f \\ f \\ th \end{pmatrix}$

其中 $x, v \in \mathbb{R}$ 分别表示位置和速度, $\varepsilon \in \mathbb{R}$ 表示已知统计特性的噪声。

□ 连续线性系统 (4) 例子

例1. 给出两个传感器GPS和加速度计,那么哪一个能够稳定地估计出 多旋翼速度?

• 加速度计。为了简化起见,用加速度计估计速度,一般用如下模型

其中 $v, a \in \mathbb{R}$ 分别表示速度和加速度, $\varepsilon \in \mathbb{R}$ 表示已知统计特性的噪声。

2016/4/28

□ 连续线性系统 (4) 例子

例1. 给出两个传感器GPS和加速度计,那么哪一个能够稳定地估计出 多旋翼速度?

• 加速度计。

□ 离散线性系统 (1) 定义

对于连续线性系统,可以通过采样周期T。精确地将连续系统转化成离散 系统。将连续系统模型转换成如下离散采样线性系统

$$\mathbf{x}_{k} = \mathbf{\Phi} \mathbf{x}_{k-1} + \mathbf{u}_{k-1}$$
$$\mathbf{y}_{k} = \mathbf{C}^{\mathrm{T}} \mathbf{x}_{k}$$

 $\mathbf{\sharp \Psi} \quad \mathbf{\Phi} = e^{\mathbf{A}T_s} \mathbf{x}_{k-1}, \mathbf{u}(t) = \mathbf{u}_{k-1}', t \in \left[(k-2)T_s \quad (k-1)T_s \right], \mathbf{u}_{k-1} = \int_0^T e^{\mathbf{A}s} \mathbf{B} ds \cdot \mathbf{u}_{k-1}'$

定义2. 如果在有限时间间隔 NT_s 内,根据输出值 y_k 和外界输入值 u_k ,能够确定系统的初始状态 x_0 的每一个分量,那么称此系统是完全可观的,简称可观测。

□ 离散线性系统

(2)直观解释(单入单出系统)	(3) 定理
$y_0 = \mathbf{C}^{\mathrm{T}} \mathbf{x}_0$ $y_1 = \mathbf{C}^{\mathrm{T}} \mathbf{x}_1 = \mathbf{C}^{\mathrm{T}} \mathbf{\Phi} \mathbf{x}_0 + \mathbf{C}^{\mathrm{T}} u_0 \Longrightarrow \mathbf{y}_1 - \mathbf{C}^{\mathrm{T}} u_0 = \mathbf{C}^{\mathrm{T}} \mathbf{\Phi} \mathbf{x}_0$ $\mathbf{C}^{\mathrm{T}} \mathbf{\Phi} = \mathbf{C}^{\mathrm{T}} \mathbf{\Phi} \mathbf{x}_0 + \mathbf{C}^{\mathrm{T}} \mathbf{\Phi} \mathbf{x}_0$	定理2. 系统
$y_{2} = \mathbf{C} \mathbf{x}_{2} = \mathbf{C} \mathbf{\Psi} \mathbf{x}_{1} + \mathbf{C} u_{1} \Longrightarrow \mathbf{y}_{2} - \mathbf{C} u_{1} - \mathbf{C} \mathbf{\Psi} u_{0} = \mathbf{C} \mathbf{\Psi} \mathbf{x}_{0}$ \vdots $y_{1} - \sum_{n=1}^{n-1} \mathbf{C}^{\mathrm{T}} \mathbf{\Phi}^{n-1-k} u_{1} = \mathbf{C}^{\mathrm{T}} \mathbf{\Phi}^{n} \mathbf{x}_{0}$	$\mathbf{x}_{k} = \mathbf{\Phi} \mathbf{x}_{k-1} + \mathbf{u}_{k-1}$ $\mathbf{y}_{k} = \mathbf{C}^{\mathrm{T}} \mathbf{x}_{k}$ 可观测的充分必要条件是
$\int_{n} \sum_{k=0}^{n} \int_{n} \int_{n$	$\begin{bmatrix} \mathbf{C}^{\mathrm{T}} \\ \mathbf{C}^{\mathrm{T}} \mathbf{\Phi} \end{bmatrix}$
$\begin{vmatrix} y_0 \\ y_1 \\ \vdots \end{vmatrix} = \begin{bmatrix} \mathbf{C}^{\mathrm{T}} \\ \mathbf{C}^{\mathrm{T}} \mathbf{\Phi} \\ \vdots \end{vmatrix} \mathbf{x}_0$	$\operatorname{rank} \begin{vmatrix} \mathbf{C}^{T} \mathbf{\Phi} \\ \vdots \\ \mathbf{C}^{T} \mathbf{\Phi}^{n-1} \end{vmatrix} = n$
$\left[y_{n-1} - \sum_{k=0}^{n-2} \mathbf{C}^{\mathrm{T}} \mathbf{\Phi}^{n-2-k} u_{k} \right] \left[\mathbf{C}^{\mathrm{T}} \mathbf{\Phi}^{n-1} \right]$	

The Kalman Filter 1959

The Kalman Filter (with music). From https://www.youtube.com/watch?v=aNzGCMRnvXQ

卡尔曼滤波是一种递推线性最小方差估计算法。它的最优估计需满足以下三个条件:

1) 无偏性:即估计值的期望等于状态的真值;

若 $E(\hat{g})=g$,那么意味着 \hat{g} 是参数g的无偏估计,否则为有偏估计, 其中 $E(\cdot)$ 表示期望。

2) 估计的方差最小;

3) 实时性。

□ 模型描述

假设线性离散系统模型如下:

$$\mathbf{x}_{k} = \mathbf{\Phi}_{k,k-1}\mathbf{x}_{k-1} + \mathbf{u}_{k-1} + \mathbf{\Gamma}_{k,k-1}\mathbf{w}_{k-1}$$
$$\mathbf{z}_{k} = \mathbf{H}_{k}\mathbf{x}_{k} + \mathbf{v}_{k}$$

式中,过程噪声 \mathbf{w}_{k-1} 和观测噪声 \mathbf{v}_{k} 的统计特性为 $\begin{array}{l} \begin{array}{l} \text{自相关系数 } \mathbf{R}_{ww} \\ \text{互相关系数 } \mathbf{R}_{wv} \\ \text{互相关系数 } \mathbf{R}_{wv} \\ \text{系统噪声方差阵} \mathbf{Q}_{k} \geq \mathbf{0} \\ \text{观测噪声方差阵} \mathbf{R}_{k} > \mathbf{0} \\ \text{克罗内克\delta函数} \\ \delta_{kj} = \begin{cases} 1, \ k = j \\ 0, \ k \neq j \end{cases} = \mathbf{E}\left(\mathbf{v}_{k}\mathbf{v}_{j}^{\mathrm{T}}\right) = \mathbf{Q}_{k}\delta_{kj} = \begin{cases} \mathbf{Q}_{k}, k = j \\ \mathbf{0}, \ k \neq j \end{cases} \begin{array}{l} \text{独立不相关} \\ \mathbf{M}_{vv}\left(k, j\right) = \mathbf{E}\left(\mathbf{v}_{k}\mathbf{v}_{j}^{\mathrm{T}}\right) = \mathbf{R}_{k}\delta_{kj} = \begin{cases} \mathbf{R}_{k}, k = j \\ \mathbf{0}, \ k \neq j \end{cases} \end{array}$

2016/4/28

□ 模型描述

假设线性离散系统模型如下:

$$\mathbf{x}_{k} = \mathbf{\Phi}_{k,k-1}\mathbf{x}_{k-1} + \mathbf{u}_{k-1} + \mathbf{\Gamma}_{k,k-1}\mathbf{w}_{k-1}$$
$$\mathbf{z}_{k} = \mathbf{H}_{k}\mathbf{x}_{k} + \mathbf{v}_{k}$$

初始状态 \mathbf{x}_0 的统计特性为 $\mathbf{E}(\mathbf{x}_0) = \hat{\mathbf{x}}_0, \operatorname{cov}(\mathbf{x}_0) = \mathbf{P}_0$ 其中, $\operatorname{cov}(\cdot)$ 表示协方差 $\mathbf{x}_{\mathrm{uv}}(0,k) = \mathbf{E}(\mathbf{x}_0\mathbf{v}_k^{\mathrm{T}}) = \mathbf{0}$ $\mathbf{x}_{\mathrm{uv}}(k,j) = \mathbf{E}(\mathbf{u}_k\mathbf{w}_j^{\mathrm{T}}) = \mathbf{0}$ $\mathbf{R}_{\mathrm{uv}}(k,j) = \mathbf{E}(\mathbf{u}_k\mathbf{w}_j^{\mathrm{T}}) = \mathbf{0}$

2016/4/28

>北航可靠飞行控制研究组 BUAA Reliable Flight Control Group

假设线性离散系统模型如下:

$$\mathbf{x}_{k} = \mathbf{\Phi}_{k,k-1}\mathbf{x}_{k-1} + \mathbf{u}_{k-1} + \mathbf{\Gamma}_{k,k-1}\mathbf{w}_{k-1}$$
$$\mathbf{z}_{k} = \mathbf{H}_{k}\mathbf{x}_{k} + \mathbf{v}_{k}$$

目的:假设滤波器形式

$$\hat{\mathbf{x}}_{k|k} = \mathbf{K}'_k \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{K}_k \mathbf{z}_k + \mathbf{K}''_k \mathbf{u}_{k-1}$$

其中 $\hat{\mathbf{x}}_{k-1|k-1}$ 是 \mathbf{x}_{k-1} 的最优线性估计(最小方差无偏估计)。求 $\mathbf{K}'_{k}, \mathbf{K}_{k}, \mathbf{K}''_{k}$

使得 $\hat{\mathbf{x}}_{k|k}$ 是 \mathbf{x}_{k} 的最优线性估计。

第一步: $求 K'_k, K''_k$ 使得 \hat{x}_{klk} 是 x_k 的无偏估计 因为 $\tilde{\mathbf{x}}_{k|k} = \mathbf{x}_k - \hat{\mathbf{x}}_{k|k}$ $=\mathbf{K}_{k}^{\prime}\tilde{\mathbf{X}}_{k-1|k-1}+\left(\mathbf{\Phi}_{k,k-1}-\mathbf{K}_{k}\mathbf{H}_{k}\mathbf{\Phi}_{k,k-1}-\mathbf{K}_{k}^{\prime}\right)\mathbf{X}_{k-1}$ + $(\Gamma_{k,k-1} - \mathbf{K}_k \mathbf{H}_k \Gamma_{k,k-1})\mathbf{v}_{k-1} + (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k - \mathbf{K}_k'')\mathbf{u}_{k-1} - \mathbf{K}_k \mathbf{v}_k$ 又因为要求 $E(\tilde{\mathbf{x}}_{k|k}) = \mathbf{0}$, 又已知 $E(\tilde{\mathbf{x}}_{k-1|k-1}) = \mathbf{0}, E(\mathbf{v}_{k}) = \mathbf{0}, E(\mathbf{w}_{k-1}) = \mathbf{0}$ 不能要求 $E(\mathbf{x}_{k-1}) = \mathbf{0}, E(\mathbf{u}_{k-1}) = \mathbf{0}$,那么只能让 $\Phi_{k,k-1} - \mathbf{K}_{k} \mathbf{H}_{k} \Phi_{k,k-1} - \mathbf{K}_{k}' = \mathbf{0} \qquad \begin{cases} \mathbf{K}_{k}' = \Phi_{k,k-1} - \mathbf{K}_{k} \mathbf{H}_{k} \Phi_{k,k-1} \\ \mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k} - \mathbf{K}_{k}'' = \mathbf{0} \end{cases} \qquad \begin{cases} \mathbf{K}_{k}' = \mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k} \Phi_{k,k-1} \\ \mathbf{K}_{k}'' = \mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k} \end{cases}$

2016/4/28

第一步: 求 K'_k , K''_k 使得 $\hat{x}_{k|k}$ 是 x_k 的无偏估计

$$\Phi_{k,k-1} - \mathbf{K}_{k} \mathbf{H}_{k} \Phi_{k,k-1} - \mathbf{K}_{k}' = \mathbf{0}$$

$$\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k} - \mathbf{K}_{k}'' = \mathbf{0}$$

$$\begin{cases} \mathbf{K}_{k}' = \Phi_{k,k-1} - \mathbf{K}_{k} \mathbf{H}_{k} \Phi_{k,k-1} \\ \mathbf{K}_{k}'' = \mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k} \end{cases}$$

 $\mathbf{\dot{x}} \mathbf{\dot{\mu}} \quad \mathbf{\hat{x}}_{k|k-1} = \mathbf{\Phi}_{k,k-1}\mathbf{\hat{x}}_{k-1|k-1} + \mathbf{u}_{k-1}, \mathbf{\hat{z}}_{k|k-1} = \mathbf{H}_k\mathbf{\hat{x}}_{k|k-1}$

 $\begin{bmatrix} \text{K} \& \\ \text{E} & \text{K} \end{bmatrix} = \begin{bmatrix} \text{K} \& \\ \text{M} & \text{K} \end{bmatrix} + \begin{bmatrix} \text{F} & \text{K} & \text{K} \\ \text{F} & \text{K} \end{bmatrix} \begin{bmatrix} \text{K} & \text{K} \\ \text{F} & \text{K} \end{bmatrix} \begin{bmatrix} \text{K} & \text{K} \\ \text{F} & \text{K} \end{bmatrix}$

第二步:求 K_k 使得 \hat{x}_{klk} 是 x_k 的最小方差估计 也就是求解优化问题

$$\min_{\mathbf{K}_{k}} \operatorname{tr} \mathbf{P}_{k|k} = \min_{\mathbf{K}_{k}} E\left(\operatorname{tr}\left(\tilde{\mathbf{X}}_{k|k}\tilde{\mathbf{X}}_{k|k}^{\mathrm{T}}\right)\right)$$

$$\downarrow \mathbf{P}_{k|k} = \left(\mathbf{I} - \mathbf{K}_{k}\mathbf{H}_{k}\right)\mathbf{P}_{k|k-1}\left(\mathbf{I} - \mathbf{K}_{k}\mathbf{H}_{k}\right)^{\mathrm{T}} + \mathbf{K}_{k}\mathbf{R}_{k}\mathbf{K}_{k}^{\mathrm{T}}$$

$$\mathbf{P}_{k|k-1} = E\left(\tilde{\mathbf{X}}_{k|k-1}\tilde{\mathbf{X}}_{k|k-1}^{\mathrm{T}}\right)$$

$$\biguplus \mathbf{P}_{k|k-1} = \mathbf{P}_{k,k-1}\mathbf{P}_{k-1|k-1}\mathbf{\Phi}_{k,k-1}^{\mathrm{T}} + \mathbf{\Gamma}_{k,k-1}\mathbf{Q}_{k-1}\mathbf{\Gamma}_{k,k-1}^{\mathrm{T}}$$

第二步:求 K_k 使得 $\hat{x}_{k|k}$ 是 X_k 的最小方差估计 也就是求解优化问题

$$\min_{\mathbf{K}_{k}} \operatorname{tr} \mathbf{P}_{k|k} = \min_{\mathbf{K}_{k}} \operatorname{E} \left(\operatorname{tr} \left(\tilde{\mathbf{X}}_{k|k} \tilde{\mathbf{X}}_{k|k}^{\mathrm{T}} \right) \right)$$

$$\frac{d}{dA}tr(ABA^{T})=2AB$$

其中 B=B^T, B是
对称阵.

·般极值在导数为

零处求得

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{K}_{k}}\mathrm{tr}\left(\mathbf{P}_{k|k}\right) = -2\mathbf{P}_{k|k-1}^{\mathrm{T}}\mathbf{H}_{k}^{\mathrm{T}} + 2\mathbf{K}_{k}\left(\mathbf{H}_{k}\mathbf{P}_{k|k-1}\mathbf{H}_{k}^{\mathrm{T}} + \mathbf{R}_{k}\right) = \mathbf{0}$$

$$\mathbf{P}_{k|k} = \left(\mathbf{I} - \mathbf{K}_{k}\mathbf{H}_{k}\right)\mathbf{P}_{k|k-1}$$

物理意义?

□ 卡尔曼滤波算法总结

[FIG2] The initial knowledge of the system at time t = 0. The red Gaussian distribution represents the pdf providing the initial confidence in the estimate of the position of the train. The arrow pointing to the right represents the known initial velocity of the train.

R. Faragher. Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation. IEEE Signal Processing Magazine, 2012, pp.128-132.

[FIG5] Shows the new pdf (green) generated by multiplying the pdfs associated with the prediction and measurement of the train's location at time t = 1. This new pdf provides the best estimate of the location of the train, by fusing the data from the prediction and the measurement.

R. Faragher. Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation. IEEE Signal Processing Magazine, 2012, pp.128-132.

□ 其他说明

(1)一般来说,采样周期合理情况下,连续系统可观,离散化的系统也会可观。然而有时候采样周期选择不当,系统可能失去可控性及可观性。

(2) 卡尔曼滤波器是一种最优的观测器,观测增益 K_k 是时变的。

(3) $\mathbf{H}_{k}\mathbf{P}_{k|k-1}\mathbf{H}_{k}^{\mathrm{T}} + \mathbf{R}_{k}$ 需要是非奇异的,否则 $\mathbf{K}_{k} = \mathbf{P}_{k|k-1}\mathbf{H}_{k}^{\mathrm{T}} \left(\mathbf{H}_{k}\mathbf{P}_{k|k-1}\mathbf{H}_{k}^{\mathrm{T}} + \mathbf{R}_{k}\right)^{-1}$ 无法实现。

(4)如果 $(\Phi_{k,k-1}, \mathbf{H}_k)$ 不可观,那么卡尔曼滤波器仍然可以运行,只不过不可观的模态没有进行修正,只是递推罢了。极端情况 $\mathbf{H}_k = \mathbf{0}$,那么 $\mathbf{K}_k = \mathbf{0}$ 整个系统完全不可观,那么

$$\hat{\mathbf{x}}_{k|k} = \mathbf{\Phi}_{k,k-1}\hat{\mathbf{x}}_{k-1|k-1} + \mathbf{u}_{k-1}$$

$$\mathbf{P}_{k|k} = \mathbf{\Phi}_{k,k-1} \mathbf{P}_{k-1|k-1} \mathbf{\Phi}_{k,k-1}^{\mathrm{T}} + \mathbf{\Gamma}_{k,k-1} \mathbf{Q}_{k-1} \mathbf{\Gamma}_{k,k-1}^{\mathrm{T}}$$

2016/4/28

考虑一类多速率采样的线性离散系统: $\mathbf{x}_{k} = \mathbf{\Phi}_{k,k-1}\mathbf{x}_{k-1} + \mathbf{u}_{k-1} + \mathbf{\Gamma}_{k,k-1}\mathbf{w}_{k-1}$ $\mathbf{z}_{k} = \mathbf{H}_{k}\mathbf{x}_{k} + \mathbf{v}_{k}$

其中:状态和噪声的定义与前面相同,不同在于传感器观测。 假设系统基本采样周期为 T_0 ,两种不同传感器的采样周期分别 为 T_i (i=1,2),且 T_i (i=1,2)为 T_0 的整数倍,即 $T_i = n_i T_0, n_i \in \mathbb{N}$ 。它们 测量矩阵为 $\mathbf{H}_{ik} \in \mathbb{R}^{m_i \times n_i}$ 噪声方差阵 $\mathbf{R}_{ik} \in \mathbb{R}^{m_i \times m_i}$ (非奇异),i=1,2。令 αT_0 表示各观测数据的采样周期的最小公倍数。当没有观测量时, 我们认为 $\mathbf{H}_k = 0$,为了保证算法不发生奇异问题,方差阵设置为 单位阵(只要不是0的常数阵都可以)。

□ 模型改进

考虑一类多速率采样的线性离散系统: $\mathbf{x}_k = \mathbf{\Phi}_{k,k-1}\mathbf{x}_{k-1} + \mathbf{u}_{k-1} + \mathbf{\Gamma}_{k,k-1}\mathbf{w}_{k-1}$ $\mathbf{z}_k = \mathbf{H}_k\mathbf{x}_k + \mathbf{v}_k$

最终,观测阵 H_k 以及观测噪声方差阵 R_k 均以 αT_0 为周期变化,即

$$\mathbf{H}_{k} = \begin{cases} \mathbf{H}_{ik}, \text{if mod}(k, n_{i}) = 0 \& \mod(k, \alpha) \neq 0 \\ \begin{bmatrix} \mathbf{H}_{1k} \\ \mathbf{H}_{2k} \end{bmatrix}, \text{if mod}(k, \alpha) = 0 \\ \mathbf{0}, \text{ else} \end{cases} \quad \mathbf{R}_{k} = \begin{cases} \mathbf{R}_{ik}, \text{if mod}(k, n_{i}) = 0 \& \mod(k, \alpha) \neq 0 \\ \operatorname{diag}(\mathbf{R}_{1k}, \mathbf{R}_{2k}), \text{if mod}(k, \alpha) = 0 \\ \mathbf{I}, \text{ else} \end{cases}$$

在整个过程中,观测阵 H_k 、观测噪声方差阵 R_k 和观测量 Z_k 的维数在不断的变化,而 \hat{x}_{klk} 和 P_{klk} 会根据每一步的信息更新而更新。它的推导过程就与经典的卡尔曼滤波就相同了。

□ 模型描述

假设非线性离散系统模型如下:

$$\mathbf{x}_{k} = \mathbf{f}(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1})$$

 $\mathbf{z}_{k} = \mathbf{h}(\mathbf{x}_{k}, \mathbf{v}_{k})$

将非线性函数 $f(\cdot)$ 围绕次滤波值 $\hat{x}_{k-1|k-1}$ 展开成Taylor级数的形式,并忽略二次以上的高阶项,得到

$$\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1}\right) = \mathbf{f}\left(\hat{\mathbf{x}}_{k-1|k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right) + \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u}_{k-1}, \mathbf{w})}{\partial \mathbf{x}} \bigg|_{\mathbf{x} = \hat{\mathbf{x}}_{k-1|k-1}, \mathbf{w} = \mathbf{0}} \left(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1|k-1}\right)$$

$$\left.+\frac{\partial \mathbf{f}(\mathbf{x},\mathbf{u}_{k-1},\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{x}=\hat{\mathbf{x}}_{k-1|k-1},\mathbf{w}=\mathbf{0}}\mathbf{w}_{k-1}$$

□ 模型描述

假设非线性离散系统模型如下:

$$\mathbf{x}_{k} = \mathbf{f}(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1})$$

 $\mathbf{z}_{k} = \mathbf{h}(\mathbf{x}_{k}, \mathbf{v}_{k})$

类似地,非线性函数 $h(\cdot)$ 在 $\hat{x}_{k|k-1}$ 处的线性化值为

$$\mathbf{h}(\mathbf{x}_{k},\mathbf{v}_{k}) = \mathbf{h}(\hat{\mathbf{x}}_{k|k-1},\mathbf{0}) + \frac{\partial \mathbf{h}(\mathbf{x},\mathbf{v})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\hat{\mathbf{x}}_{k|k-1},\mathbf{v}=\mathbf{0}} (\mathbf{x}_{k}-\hat{\mathbf{x}}_{k|k-1}) + \frac{\partial \mathbf{h}(\mathbf{x},\mathbf{v})}{\partial \mathbf{v}}\Big|_{\mathbf{x}=\hat{\mathbf{x}}_{k|k-1},\mathbf{v}=\mathbf{0}} \mathbf{v}_{k}$$

$$\begin{split} \mathbf{\Phi}_{k,k-1} &= \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u}_{k-1}, \mathbf{w})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{H}_{k} &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{H}_{k,k-1} &= \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u}_{k-1}, \mathbf{w})}{\partial \mathbf{w}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{F}_{k,k-1} &= \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u}_{k-1}, \mathbf{w})}{\partial \mathbf{w}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{u}_{k-1}' &= \mathbf{f}(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}) - \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u}_{k-1}, \mathbf{w})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k-1,k-1}, \mathbf{w} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \mathbf{z}_{k} - \mathbf{h}(\hat{\mathbf{x}}_{k|k-1}, \mathbf{0}) + \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k-1,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &= \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{v})}{\partial \mathbf{v}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k,k-1}, \mathbf{v} = \mathbf{0}} \\ \mathbf{x}_{k}' &=$$

(1)提出了一种考虑多旋翼运动特性的非线性匀速过程模型
 以实现基于外部单目视觉的多旋翼准确和鲁棒位姿估计。

(2) 提出了一种可以处理任意数目点的特征点匹配方法和一

种基于特征点匹配的扩展卡尔曼滤波方法。

(3)实验表明在处理噪声和遮挡方面,文章所提的扩展卡尔 曼滤波方法比传统的扩展卡尔曼滤波方法具有更好的鲁棒性。该方法既适用于普通摄像机也适用于鱼眼摄像机。

• Qiang Fu, Quan Quan, Kai-Yuan Cai. Robust Pose Estimation for Multirotor UAVs Using Off-board Monocular Vision. IEEE Transactions on Automation Science and Engineering. (在审)

口过程模型1: 非线性匀速过程模型 $\dot{\mathbf{T}} = \mathbf{V}$ $\dot{\mathbf{V}} = \mathbf{R}(\Theta)(g + \varepsilon_1)\mathbf{e}_3 - g\mathbf{e}_3$ $\dot{\Theta} = \mathbf{W}$ $\dot{\mathbf{W}} = \xi$

其中, $\mathbf{T} = [X, Y, Z]^{\mathrm{T}}$, $\mathbf{V} = [V_x, V_y, V_z]^{\mathrm{T}}$, $\mathbf{W} = [w_1, w_2, w_3]^{\mathrm{T}}$ 分别为相对位置、 速度和角速度向量; $\boldsymbol{\Theta} = [\theta, \varphi, \phi]^{\mathrm{T}}$ 为相对姿态角; $\mathbf{R}(\boldsymbol{\Theta})$ 为由姿态 角表示的旋转矩阵; ε_1 和 $\boldsymbol{\xi} = [\varepsilon_1, \varepsilon_2, \varepsilon_3]^{\mathrm{T}}$ 是高斯白噪声。

5. 应用实例

□过程模型1: 非线性匀速过程模型

 $X_{k} = X_{k-1} + T_{s}V_{r,k-1}$ 假设 T_s 表示采样时间, $V_{x,k} = V_{x,k-1} + (T_s \cos \phi_{k-1} \sin \theta_{k-1} \cos \phi_{k-1} + T_s \sin \phi_{k-1} \sin \phi_{k-1})(g + \varepsilon_{1,k-1})$ 采用一阶向后差分法. 得 $Y_k = Y_{k-1} + T_s V_{y,k-1}$ 到用于卡尔曼滤波过程模 $V_{y,k} = V_{y,k-1} + (T_s \cos \phi_{k-1} \sin \theta_{k-1} \sin \phi_{k-1} - T_s \sin \phi_{k-1} \cos \phi_{k-1})(g + \varepsilon_{1,k-1})$ $Z_{k} = Z_{k-1} + T_{s}V_{z,k-1}$ 型的离散形式: $V_{z,k} = V_{z,k-1} - T_s g + T_s \cos \phi_{k-1} \cos \theta_{k-1} \left(g + \varepsilon_{1,k-1} \right)$ $\theta_k = \theta_{k-1} + T_s w_{1,k-1}$ $W_{1k} = W_{1k-1} + T_s \mathcal{E}_{2k-1}$ $\varphi_k = \varphi_{k-1} + T_s W_{2k-1}$ $W_{2k} = W_{2k-1} + T_s \mathcal{E}_{3k-1}$ $\phi_k = \phi_{k-1} + T_s w_{3,k-1}$ $W_{3,k} = W_{3,k-1} + T_s \mathcal{E}_{4,k-1}$

5. 应用实例

5. 应用实例

□观测模型(此处细节简化)

如果3D-2D的特征匹配点 $P_i \leftrightarrow p_i$ 已知的情况下,描述输 出观测和系统状态之间关系的观测模型为

图: (a)单摄像机下,不同坐标系的说明; (b) 四旋翼和固定在其上面的四个反光标识点

$$\mathbf{z}_k = \mathbf{g}(\mathbf{x}_k) + \mathbf{v}_k$$

其中 $\mathbf{z}_k = \begin{bmatrix} u_1^i v_1^i \dots u_{n_F}^i v_{n_F}^i \end{bmatrix}_k^T \in \mathbb{R}^{2n_F}$ 是 n_F 个 特征点组成的观测向量。Vk是观测 噪声向量, 假设其中的每个元素是 独立同分步且均值为零、方差为 **R**;的高斯白噪声。

2016/4/28

□ EKF方程

采用非线性匀速过程模型和观测模型,其EKF预测和校正方程为:

$$\begin{aligned} \hat{\mathbf{x}}_{k,k-1} &= \mathbf{f}\left(\hat{\mathbf{x}}_{k-1,k-1}\right) \\ \mathbf{P}_{k,k-1} &= \mathbf{F}_{k-1}\mathbf{P}_{k-1,k-1}\mathbf{F}_{k-1}^{\mathrm{T}} + \mathbf{\Gamma}_{k-1}\mathbf{Q}_{k-1}\mathbf{\Gamma}_{k-1}^{\mathrm{T}} \\ \mathbf{K}_{k} &= \mathbf{P}_{k,k-1}\mathbf{H}_{k}^{\mathrm{T}}\left(\mathbf{R}_{k} + \mathbf{H}_{k}\mathbf{P}_{k,k-1}\mathbf{H}_{k}^{\mathrm{T}}\right)^{-1} \\ \hat{\mathbf{x}}_{k,k} &= \hat{\mathbf{x}}_{k,k-1} + \mathbf{K}_{k}\left(\mathbf{z}_{k} - \mathbf{g}\left(\hat{\mathbf{x}}_{k,k-1}\right)\right) \\ \mathbf{P}_{k,k} &= \mathbf{P}_{k,k-1} - \mathbf{K}_{k}\mathbf{H}_{k}\mathbf{P}_{k,k-1} \\ \mathbf{F}_{k-1} &= \frac{\partial \mathbf{f}\left(\mathbf{x}\right)}{\partial \mathbf{x}} \bigg|_{\mathbf{x}=\hat{\mathbf{x}}_{k-1,k-1}}, \mathbf{H}_{k} = \frac{\partial \mathbf{g}\left(\mathbf{x}\right)}{\partial \mathbf{x}}\bigg|_{\mathbf{x}=\hat{\mathbf{x}}_{k,k-1}} \end{aligned}$$

(1) 仿真实验

图:单摄像机下,仿真实验中生成的四旋翼轨迹:

(a)二维圆轨迹; (b)三维曲线轨迹

(1) 仿真实验 图a-f分别为用三种卡尔曼 滤波方式估计四旋翼在 二维圆轨迹下状态 $X, Y, Z, \theta, \varphi, \phi$ 的均方根 误差,可以看出所提的扩展 卡尔曼滤波方法更加精确。

(1) 仿真实验 图a-f分别为用三种卡尔曼 滤波方式估计四旋翼在 三维曲线轨迹下状态 $X, Y, Z, \theta, \varphi, \phi$ 的均方根 误差,可以看出所提的扩展 卡尔曼滤波方法更加精确。

15

Noise level (pixels)

42

(f)

15 -

10

北航可靠飞行控制研究组

BUAA Reliable Flight Control Group

2016/4/28

(1) 仿真实验 图a-f分别为用三种卡尔曼 滤波方式估计四旋翼在 有遮挡情况下状态(只有两个 特征点被观察到) $X, Y, Z, \theta, \varphi, \phi$ 的均方根 误差,可以看出所提的扩展卡 尔曼滤波方法更加鲁棒。

Robust Pose Estimation for Multirotor UAVs Using Off-board Monocular Vision

Qiang Fu, Quan Quan and Kai-Yuan Cai

rfly.buaa.edu.cn

- 实际中我们如何选取传感器和如何布置传感器等大部分是 靠经验,没有实际的理论来支持。从理论上可以进行可观 度(Degree of Observability)的研究,即可观测的程度 方面的研究。
- 在Kalman滤波方面的研究可以考虑更加实际的情况,比如: 对于维数较高的模型减少计算量,减少对噪声特性的依赖, 减少延迟等等。

选做一题:

- 1. 根据课件提供的思路完成经典卡尔曼滤波的推导过程。
- 考虑实际滤波过程中的延迟问题,参考相关文献给出一种时滞 卡尔曼滤波器的设计思路。
- 自拟一道与本章节内容相关的题,并回答。(难度与上面题目相当,不能抄袭其他书籍)

资源

- (1) 课程中心 (课件、资料、作业等)
- (2) 可靠飞行控制研究组主页(课件等)

http://rfly.buaa.edu.cn/resources/

(3) 关注可靠飞行控制研究组公众号 buaarfly(课件等)

谢谢!

如课件有错误之处,请反馈到邮箱 qq_buaa@buaa.edu.cn

