系统组成及原理
四轴(多轴)飞行器也叫四旋翼(多旋翼)飞行器,它有四个(多个)螺旋桨,四轴(多轴)飞行器也是飞行器中结构最简单的飞行器了。前后左右各一个,其中位于中心的主控板接收来自于遥控发射机的控制信号,在收到操作者的控制后通过数字的控制总线去控制四个电调,电调再把控制命令转化为电机的转速,以达到操作者的控制要求。根据所安装的飞控系统来确定电机的转动顺序和螺旋桨的正反,机械结构上只需保持重量分布的均匀,四电机保持在一个水平线上,可以说结构非常简单,做四轴的目的也是为了用电子控制把机械结构变得尽可能的简单。
机身:机身是大多数设备的安装位置,也是多旋翼无人机的主体,也成为机架。根据机臂个数不同分为:三旋翼,四旋翼,六旋翼,八旋翼,十六旋翼,十八旋翼也有四轴八旋翼等,结构不同叫法也不同。出于结构强度和重量考虑,一般采用碳纤维材质。
起落架:多旋翼无人机唯一和地面接触的部位。作为整个机身在起飞和降落时候的缓冲,也是为了保护机载设备,要求强度高,结构牢固,和机身保持相当可靠的连接,能够承受一定的冲力。一般在起落架前后安装或者涂装上不同的颜色,用来在远距离多旋翼无人机飞行时能够区分多旋翼无人机的前后。
马达:对于电动无人机来说就是电机,是多旋翼无人机的动力机构,提供升力,推力等。无刷电机去除了电刷,最直接的变化就是没有了有刷电机运转时产生的电火花,这样就极大减少了电火花对遥控无线电设备的干扰。无刷电机没有了电刷,运转时摩擦力大大减小,运行顺畅,噪音会低许多,这个优点对于模型运行稳定性是一个巨大的支持。
电机四个数字的含义: 2212电机、2018电机等等,这表示电机的尺寸。不管什么牌子的电机,具体都要对应4位这类数字,其中前面2位是电机转子的直径,后面2位是电机转子的高度。注意,不是外壳。简单来说,前面2位越大,电机越肥,后面2位越大,电机越高。又高又大的电机,功率就更大,适合做大四轴。通常2212电机是最常见的配置了。
无刷电机KV值定义:转速/V,意思为输入电压增加1V,无刷电机空转转速增加的转速值。例如:1000kv电机,外加1v电压,电机空转时每分钟转1000转,外加2v电压,电机空转就2000转了。单从KV值,不可以评价电机的好坏,因为不同KV值有不同的适用不同尺寸的浆绕线匝数多的,KV值低,最高输出电流小,但扭力大,上大尺寸的浆;绕线匝数少的,KV值高,最高输出电流大,但扭力小,上小尺寸的浆
电调:电子调速器,将飞控的控制信号,转变为电流信号,用于控制电机转速。因为电机的电流是很大的,通常每个电机正常工作时,平均有3A左右的电流,如果没有电调的存在,飞控根本无法承受这样大的电流,而且飞控也没有驱动无刷电机的功能。同时电调在多旋翼无人机中也充当了电压变化器的作用,将11.1V电压变为5V电压给飞控供电。
电池:是电动多旋翼无人机的供电装置,给电机和机载电子设备供电。最小是1S电池,常用的是3S、4S、6S,1S代表3.7V电压,
螺旋桨:安装在电机上,多旋翼无人机安装的都是不可变总距的螺旋桨,主要指标有螺距和尺寸。
浆的指标是4位数字,前面2位代表桨的直径(单位:英寸,1英寸=254毫米)后面2位是桨的螺距。
正反桨 :四轴飞行为了抵消螺旋桨的自旋,相邻的桨旋转方向是不一样的,所以需要正反桨。正反桨的风都向下吹。适合顺时针旋转的叫正浆、适合逆时针旋转的是反浆。安装的时候,一定记得无论正反桨,有字的一面是向上的(桨叶圆润的一面要和电机旋转方向一致)。
电机与螺旋桨的搭配:这是非常复杂的问题,我自己也在研究当中,所以建议采用大家常见的配置吧,但原理这里可以阐述一下:螺旋桨越大,升力就越大,但对应需要更大的力量来驱动;螺旋桨转速越高,升力越大;电机的kv越小,转动力量就越大;
综上所述,大螺旋桨就需要用低kv电机,小螺旋桨就需要高kv电机(因为需要用转速来弥补升力不足)。如果高kv带大桨,力量不够,那么就很困难,实际还是低俗运转,电机和电调很容易烧掉。如果低kv带小桨,完全没有问题,但升力不够,可能造成无法起飞。例如:常用1000kv电机,配10寸左右的桨。
飞控:包括陀螺仪、加速度计、电路控制板、各外设接口。
陀螺仪:理论上陀螺只测试旋转角速度,但实际上所有的陀螺都对加速度敏感,而重力加速度在我们地球上又是无处不在,并且实际应用中,很难保证陀螺不受冲击和振动产生的加速度的影响,所以再实际应用中陀螺对加速度的敏感程度就非常的重要,因为振动敏感度是最大的误差源。两轴陀螺仪能起到增稳作用,三轴陀螺仪能够自稳。
加速度计:一般为三轴加速度计,测量三轴加速度和重力。
遥控装置:包括遥控器和接收机,接收机装在机上。一般按照通道数将遥控器分成六通道、八通道、十四通道遥控器等,对于通道的概念在后边章节会有详细介绍。
GPS模块:测量多旋翼无人机当前的经纬度、高度、航迹方向、地速等信息。一般在GPS模块中还会包含地磁罗盘(三轴磁力计):测量飞机当前的航向。
任务设备:目前最多的就是云台,常用的有两轴云台和三轴云台;云台作为相机或摄像机的增稳设备,提供两个方向或三个方向的稳定控制。云台可以和控制电机的集成在一个遥控器中,也可以单独的遥控器控制。
数据链路:数据链路包括数传和图传。数传就是数字传输,数传终端和地面控制站(笔记本或手机等数据终端),接受来自飞控系统的数据信息。图传就是图像传输,接受机载相机或摄像机拍摄的图像,一般延迟在几十毫秒,目前也有高清数字图传,传输速率和清晰度都有很大提高。
控制原理
四轴飞行器的控制原理就是,当没有外力并且重量分布平均时,四个螺旋桨以一样的转速转动,在螺旋桨向上的拉力大于整机的重量时,四轴就会向上升,在拉力与重量相等时,四轴就可以在空中悬停。在四轴的前方受到向下的外力时,前方马达加快转速,以抵消外力的影响从而保持水平,同样其它几个方向受到外力时四轴也是可以通过这种动作保持水平的,当需要控制四轴向前飞时,前方的马达减速,而后方的马达加速,这样,四轴就会向前倾斜,也相应的向前飞行,同样,需要向后、向左、向右飞行也是通过这样的控制就可以使四轴往我们想要控制的方向飞行了,当我们要控制四轴的机头方向向顺时针转动时,四轴同时加快左右马达的转速,并同时降低前后马达的转速,因为左右马达是逆时针转动的,而左右马达的转速是一样,所以左右是保持平衡的,而前后马达是顺时针转动的,但前后马达的转速也是一样的,所以前后左右都是可以保持平衡,飞行高度也是可以保持的,但是逆时针转动的力比顺时针就大,所以机身会向反方向转动,从而达到控制机头的方向。这也是为什么要使用两个反桨,两个正桨的原因。
电调
我们平时用的商品电调是通过接收机上的油门通道进行控制的,这个接收机出来的控制信号一般都是20mS 间隔的PPM脉宽控制信号,而四轴为了提高响应的速度,需要控制命令的间隔更短-比如说5mS,所以就需要特殊的电调而不能用普通的商品电调,但是为什么要使用I2C总线跟电调连接呢,这个跟电路设计以及软件编写等有关,I2C总线在硬件连接上可以多个设备直接并连在总线上,它有相应的传输机制保证主机与各个从机之前顺畅沟通,这样连接就比较的方便,所以四个电调的控制线是并接在一起连到主控板上就可以了,这个也跟我们选用的芯片相关,很多单片机都有集成I2C总线的,软件设计起来也得心应手。
陀螺仪
陀螺仪对微小的转动非常敏感,所以它对飞行器飞行姿态的控制起着重要作用,飞机有一点点的偏转陀螺仪就能自动修正,简单的来说陀螺仪就是帮助飞机保持稳定姿态的,所以又陀螺仪的飞机飞行稳定,但是四轴飞行器没有陀螺仪就不能飞了,因为四个螺旋桨的动力有一点点差别就会侧翻,三轴加速计是用来分析陀螺仪的信号,转了多少角度,分析此时飞行姿态,它能够记住飞机的姿态,当你操纵杆回位后,飞机就自动恢复水平。
简单来说,航拍四轴(多轴)飞行器就是利用一个四轴(多轴)的飞行器搭载一个摄像,再加上一个图传系统实现地面的监控,就组成了一个航拍四轴(多轴)飞行器了。
结构
电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。
与电动直升机相比,四旋翼飞行器有下列优势:各个旋翼对机身所施加的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。四旋翼飞行器在空间共有6个自由度(分别沿3个坐标轴作平移和旋转动作),这6个自由度的控制都可以通过调节不同电机的转速来实现。
构造
四轴飞行器其构造特点是在它的四个角上各装有一旋翼,由电机分别带动,叶片可以正转,也可以反转。为了保持飞行器的稳定飞行,在四轴飞行器上装有3个方向的陀螺仪和3 轴加速度传感器组成惯性导航模块,它还通过电子调控器来保证其快速飞行。
技术难点
首先,在飞行过程中它不仅受到各种物理效应的作用,还很容易受到气流等 外部环境的干扰,很难获得其准确的性能参数。
其次,微型四旋翼无人飞行器是一个具有六个自由度,而只有四个控制输入的欠驱动系统。它具有多变量、非线性、强耦合和干扰敏感的特性,使得飞行控制系统的设计变得非常困难。
再次,利用陀螺进行物体姿态检测需要进行累计误差的消除,怎样建立误差模型和通过组合导航修正累积误差是一个工程难题。这三个问题解决成功与否,是实现微型四旋翼无人飞行器自主飞行控制的关键,具有非常重要的研究价值。